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Abstract

An important consideration in the global local finite-element method
(GLFEM) 1is the availability of global functions for the given problem.

The role and mathematical requirements of these global functions in a GLFEM

analysis of localized stress states in prismatic structures are discussed.
A method is described for determining these global functions. Underlying
this method are theorems due to Toupin and Knowles on strain energy decay
rates, which are related to a quantitative expression of Saint-Venant's
principle. It is mentioned that a mathematically complete set of global
functions can be generated, so that any arbitrary interface condition
between the finite element and global subregions can be represented.
Convergence to the true behavior can be achieved with increasing global
functions and finite-element degrees of freedom. Specific attention is
devoted to mathematically two-dimensional and three-dimensional prismatic
structures, Comments are offered on the GLFEM analysis of NASA flat panel
with a discontinuous stiffener. Methods for determining global functions
for other effects are also indicated, such as steady-state dynamics and
bodies under initial stress.
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Introduction

The finite-element method (FEM) has revolutionized structural and
stress analyses in the last quarter of this century. Its impact has been
widespread, even extending beyond the preserve of structural engineers to
other fields. Although FEM is acknowledged as an extremely powerfu)
model ing technique, the analysis community with its collective experience
will admit that it is not the quintessential technique. There are problems
not well suited to FEM that result in clumsy, ineffective and costly
mathematical models. Examples can be cited from problems involving stress
singularities and infinite domains. To obviate the difficulties,
modifications to FEM have been explored. One alternate approach which
bodes considerable pramise i1s the so-called Global-Local Finite-Element
Method (GLFEM).

GLFEM utilizes both conventional finite elements and classical Ritz
functions in the modeling process. Their respective roles are readily
apparent; finite elements work well in regions where complicated geametry
and inhomogeneous material characterizations prevail, and Ritz functions,
hereinafter referred to as global functions in GLFEM, enable the behavior
other regions to be represented accurately and efficiently. At this stage
of development, GLFEM can be assessed to be in its maturing phase. It is
of good 1ineage, has already exhibited an enhanced capability above FEM in
certain problems, and pramises effectiveness in other classes of problems
upon its full development.

Herein, GLFEM as applied to the analysis of localized stresses in
prismatic structures is discussed. First, the essence of GLFEM and
various GLFEM modeling layouts are summarized. A brief review of some
problems that have been successfully analyzed by GLFEM is given. Then,
the main theme relating to GLFEM analysis of localized stress states is
addressed. Prismatic structures that can be described mathematically
by two spatial variables are discussed first. Attention is devoted to
the global functions, their development and their roles in the present
setting. Then, three-dimensional structures are considered, with
reference to the NASA example problem, where an outline of a method of
attack is given. Last, comments on the analysis of localized stresses
involving steady-state dynamic effects as well as other conditions are
given.

Basic Concepts of GLFEM and the Various Mesh Configurations

Hamilton's principle, or alternatively the theorem of minimum
potential energy when no inertial effects are present, may be considered
as the basis for generating GLFEM equations. The theory and variational
derivation of these equations may be found in Ref. [1,pp.451-474]., Also
included therein is a survey of GLFEM contributions to the 11iterature up
to 1982.

As noted earlier, the technique utilizes finite-element modeling with
classical Ritz approximations simultaneously. It enjoys the advantages of



more versatile modeling capabilities with substantially fewer degrees of
freedom. Various global/local modeling configurations are illustrated in
Fig. 1. Figs. la and 1f represent, respectively, the classical Ritz and
finite-element configurations. The others are possible GLFEM mesh layouts.
In a given problem, the modeling may take the form of any one of these con-
figurations or a combination of two or more of them for various subregions.
An important key is the enforcement of kinematic inter-regional continuity
between various global and local subregions by means of constraint equa-
tions. In problems on localized stress states, only the Fig. lc configura-
tion will be used, where finite elements exclusively are used in one sub-
region and global functions in the other. Moreover, the global subregion
may be infinite in extent.

The governing matrix equations in a GLFEM analysis have the form:

[K,yd K, 2| €8 M1 DM, 1]l €6 {F,}
[Kged [Kggd]| 153 Mgy Mg 1]l (5) (F,}

where {8} denotes the finite-element degrees of freedom and {S} contains
the array of generalized coordinates associated with the global functions.
In Eq. (1), [Kggl » [Mggl, [Kyy1, and [Myp]refer to the global and Tocgl
stiffness and mass matr?ces of the system. The matrices [Kgql = [Kpq1

and [Mggl = [Mgq 17 represent global-local coupling from imposSing kinématic
continu?ty at 1nterface(s) between subregion(s). Details on the formation
of these matrices may be found in Ref. [1].

It is mentioned that GLFEM variants are possible, which do not lead
to the same set of governing equations as Eq. (1). These variants contain
the spirit of GLFEM and employ the modeling configurations shown in Fig. 1;
however, the method of enforcing inter-regional continuity may differ. An
application concerned with elastic wave scattering will {llustrate one such
variant,

Another key point in GLFEM is the availability of an appropriate set
of global functions for a given problem or a class of problems. The
accuracy and effectiveness of the method are dependent upon the quality
of the global functions. The choice of these global functions for the
analystis of lccalized stresses in prismatic structures and their method
of derivation will be discussed in what follows. It will become apparent
why these global functions, together with the finite-element model of
the subregion that contains the localized stresses, will lead to a
superior model.

Same Examples of Global Functions for GLFEM

Two areas ideally suited to GLFEM are fracture mechanics and 1nfinite
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and/or semi-infinite domain problems. Much has been published on various
aspects of fracture mechanics problems. Many numerical methods have been
used, many falling within a GLFEM classification or its variants. The
global subregion model usually takes the form of special crack tip
elements, where the singular stress field is incorporated into the
stiffness matrix. These elements are well known. No further elaboration
on this subject will be given here, Elastostatic analyses of half-space
problems, wherein the far field behavior is represented by global functions
(for example, Boussinesq or Cerruti solutions), have also met with
considerable success. A number of references on both of these subjects
may be found 1n Ref. [1].

Herein, two recent GLFEM applications are mentioned to emphasize the
roles of the global functions and their mathematical suitability. They are
concerned with (1) steady-state elastic wave scattering by axisymmetric
objects embedded in an infinite isotropic medium and (2) steady-state
soil-structure interaction {nvolving an axisymmetric structure occupying
some locale in a semi-infinite medium. The feature of note 1s that these
global functions constitute a complete set of eigenfunctions and have the
capability of mathematically representing an arbitrary scattered field to
any given accuracy. Hence, the true behavior in the far field can be
achieved.

In Fig. 2 1s shown an elastic, axisymmetric i1nclusion embedded in an
etastic, isotropic medium. Because finite elements are used for the object
it may have inhomogeneous, orthotropic properties. The finite-element
subregion includes this object and a portion of the surrounding medium.

For convenience in the analysis, the interface is taken to be spherical.
Outside of the finite-element subregion is the outer field, where a
complete set of outgoing spherical hamonics is used to model the scattered
field. Each component satisfies the equations of motion and the Sommerfeld
radiation conditions. The global functions have specific stress and
displacement distributions at the interface, and their undetermined
strengths are the global function coefficients or the terms in {S}. A
given incident wave illuminates this object. The scattered field is
determined by solving the finite-element equations and requiring that the
sum of incident and scattered wave fields based on the global functions
have both traction and displacement continuity with the finite-element

data at the interface. Details of this analysis may be found in Ref. [2].
Here, attention is called to the mathematical flexibility of the global
functions for accommodating interface continuity to any precision with a
sufficient number of terms.

The dynamic soil-structure interation problem under steady-state
conditions is shown in Fig. 3. The approach used here is similar to that
for elastic wave scattering by an object embedded in the entire space.

In fact, the same set of spherical harmonics for the entire space may be
applied to this half-space probiem. However, traction-free surface
conditions are not satisfied by the spherical hamonics. Thus, 1in
addition to traction and displacement continuity at the hemispherical
interface, it is necessary to enforce the traction-free surface 1n the
global subregion. In Refs. [3,41, details concerning an integral



constraint condition to meet this traction-free surface condition are

given. Again, it is noted that because a complete set of global

functions is used (that is, a set capable of modeling any arbitrary traction
and displacement conditions between various subregfions in a GLFEM layout),
the analysis procedure enjoys the opportunity of converging onto the

true behavior with increasing FEM and global degrees of freedom.

Mathematically Two-Dimensional Structures

The choice of global functions for mathematically two~-dimensional
structures will now be discussed. As {llustrations of this class of
problems and their GLFEM layouts, refer to Fig. 4, where examples of a
laminated composite plate and cylinders are given. The double lap joint
may be considered as a plane strain problem herein. The scarf joint
Joining two cylinders may be taken as an axisymmetric structure under
axisymmetric or asymmetric loads. The purpose is to study the stresses
in these joints.

Uniform stress states exist at points well away fram these localized
stress regions. If FEM were used, it 1s obvious that an awkward model
would result. In GLFEM, two-dimensional finite elements (planar or
axisymmetric toroidal elements) are used for the subregion containing the
localized stresses. If the localized stress state contains a singularity,
a global subregion within the finite-element subregion may be added. The
interface location 1s dependent on the global functions' mathematical
capability for capturing the transitional stress and displacement fields
accurately. For global functions capable of representing the true
behavior, the finite-element subregion can be quite small with the
interface(s) near to the localized stress area. An independent set of
global functions must be adopted at each interface. For the lap joint
in Fig. 4, two or three distinct systems of global functions may be
needed depending on the thickness and material properties of the plate
components. Each set of global functions is associated with its own
set of generalized coordinates or global coefficients. For the
cylindrical scarf joint, two independent sets are needed.

The global functions in these casesare based on theorems relating to
a quantitative expression of St. Venant's principle. Toupin [5] and
Knowles [6] presented upper bound estimates of strain energy decay rates
in terms of distance from a self-equilibrated stress state. Their
results can be stated in the form of a strain energy inequality:

Vix) < V(0) e &YX (2)

where Y is the inverse of the characteristic decay length, V(0) is the
total strain energy and V(x) is that portion of V(0) in the body beyond
x. Since the strain energy is quadratic, the mechanical variables such
as stress, strain and displacement are of the forms:
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wvhere Ki (i=1,2,3) are constants.

Based on these theorems, a boundary-value problem can be formulated
for a prismatic structure. Using the solution form in the prismatic
direction as e~YX, the analysis leads to an eigenvalue problem. The
eigenvalues Y's are the characteristic inverse decay lengths and the
eigenfunctions are distributions of self-equilibrated stress states.
These efigendata comprise a complete set from which any arbitrary seilf-
equilibrated stress state may be represented. These eigendata may be
used as global functions for describing the far-field behavior in a
prismatic structure. Horgan and his colleagues have solved a number
of problems on hamogeneous and sandwich plates under plane strain using
the Airy stress function as the primary dependent variable (see, for
examples, Refs. [7,8]).

For a Taminated composite structure, it is more convenient to
determine the eigendata numerically. Dong and Goetschel [9] developed
a one~dimensional finite-element analysis for extracting eigendata for
a laminated composite plate with an arbitrary number of bonded, elastic
Taminates. Finite-element discretization occurs in the thickness
direction, see Fig. 5. Applying the theorem of minimum potential energy.
a system of second-order ordinagx differential equations is obtained.
By invoking exponential decay e X, the following second-order algebraic
eigenvalue problem results:

K 3} - vk 1{a} + YZEK3]{Q} = 0 (4)

where {Q} is an ordered set of the plate's nodal displacements. This
equation is reducible to first order with a non-symmetric matrix. If a
large number of degrees of freedom are involved, a Block-Stodola {teration
technique [10] can be used to extract the eigendata efficiently. The
solution consists of a complete set of eigenvalues and corresponding
eigenvectors, which are the sel f-equilibrated displacement states for the
given composite plate. Stresses can be computed from these displacements.

Laminated cylinders may also be solved using the same finite-element
scheme, see Ref. [11]. The mechanical variables have circumferential
dependence, which may be expressed analytically by Fourier series. As
a circunferential mode number m occurs in this case, the counterpart to
Eq. (4) for each circumferential mode has the form:

K (MIQ@ - YIKmIQ + Y2[K3(m)]{0} 0 (5)

The solution to Eq. (4) or (5) provides the global function data
base for the numerical evaluation of the global stiffness matrix and the
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global-Tlocal coupiing as a prelude to a mathematically two-dimensional
GLFEM analysis of the localized stress zones. Some preliminary results
of this type have been obtained, which are contained in Refs. [12,13].
These 1imited scope studies indicate an overall feasibility for this
approach.,

The accuracy of the global functions depends on the fineness of the
one-dimensional finite-element model adopted for the eigenproblem. Since
only one-dimensional finite elements are used, a large model does not incur
an inordinate computational effort because of a very small bandwidth.

The number of global functions required in a GLFEM analysis depends
on both the nature of the localized stress and the location of the
interface. Having an interface near the localized stress zone will
require a larger number of global functions, but with a decrease in the
finite-element coordinates. Conversely, an interface far removed from
the localized zone needs fewer global functions, but is counteracted by
a greater number of finfte-element degrees of freedom,

Three~Dimensional Structures and the NASA Problem

A schematic of a three-dimensional prismatic structure and the NASA
problem of a flat stiffened composite panel with a discontinuous stiffener
are shown in Fig. 6. In this class of problems, three-dimensional finite
elements must be employed in the localized stress region. Global functions
must be used at the interface. They can be obtained from a two-dimensional
finite-element analysis of the inverse characteristic decay lengths.

The analysis to determine the global functions follows the same
methodology as that for mathematically two-dimensional structures. The
prismatic cross-section is modeled by two-dimensional finite elements.
With the dependence in the prismatic direction taken as e Y%, an
eigenproblem emerges for the extraction of eigendata that form the
global function data base for the given cross section. The other
aspects are the same as that described in the previous section., It is
obvious that,in this case, the computational effort is greater.

Some comments can be given on a GLFEM analysis of the NASA flat panel.
The set of two-dimensional global functions constitutes a complete system
of eigenfunctions, with the non-zero eigenvalues associated with inverse
characteristic decay lengths of sel f-equilibrated stress states. There
are two zero eigenvalues for two stress distributions exhibiting no decay.
They are the uniform axial deformation and pure bending states. These two
global functions are needed in a GLFEM analysis of the NASA flat panel,
since the discontinuous stiffener may produce bending in addition to its
uniform end shortening. A set of global functions with all of these
members present should permit a three-dimensional finite-element model
to be concentrated on the details of the discontinuous stiffener region.
Parametric studies wherein the hole and the gap length in the
discontinuous stiffener are varied may be conducted. Each configuration
will require a change of the three-dimensional finite-element mesh, but
the same set of global functions may be used in all cases.
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Applications to Steady-State Problems

The discussion of global functions in the two earlier sections
pertained to elastostatic analysis of the localized stress zones. Here
some remarks on steady-state dynamic effects are made. The one-dimensional
finite-element method for generating global function data bases can be
modified for steady-state inertial effects by including kinetic energy in
the problem formulation. Instead of Eqs. (4) and (5), those equations
become, respectively:

K@ = vl + Yk + ofmMl@ = o (6)

Ky (m1Q} - YIK,(mliQ} + Y2[K3(m)]{0} + oM@ = o0 7

where w is the steady-state forcing frequency. The derivations of these
equations are given in Refs. [11,14].

With these global functions, 1t i1s possible to study elastic wave
scattering in prismatic structures by discontinuities during vibration
or by some other steady-state dynamic input. GLFEM analysis of this
type of prismatic structures will be similar to problems of elastic wave
scattering by an object embedded in an infinite medium or soil-structure
interaction.

Effects of Initial Stress

Using the same methodology, prismatic structures under 1nitial
stress may also be analyzed. In this case, the global functions must
include the prestressing effect. One-dimensional finite-element
analysis of wave propagation in laminated composite plates and cylinders
under initial stress have been explored, see Refs. [15,16]. It is a
straightforward task to adapt these formulations to generate an
eigenproblem for the global functions for a prismatic structure under
initial stress. Also, no conceptual difficulties are seen 1n an
extension to three-dimensional prismatic structures under prestress.

Concluding Remarks

Considerable discussion has been devoted to the strategies of GLFEM
analyses of prismatic structures with localized stress regions and other
discontinuities. The role of the global functions has been clearly
outlined and their mathematical requirements indicated. The method
for deriving these global functions for prismatic structures, whose
cross-sectional geometries are complicated by laminated construction,
has been discussed. From the discussion of GLFEM analysis strategy,
it should be clear that GLFEM 1s feasible and effective. Oonsfiderable
economy of computational efforts over a strictly FEM approach should
be realized.
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Figure 1. Basic global-local mesh configurations.
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